Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.08.433449

ABSTRACT

We have identified camelid single-domain antibodies (VHHs) that cross-neutralize SARS-CoV-1 and -2, such as VHH72, which binds to a unique highly conserved epitope in the viral receptor-binding domain (RBD) that is difficult to access for human antibodies. Here, we establish a protein engineering path for how a stable, long-acting drug candidate can be generated out of such a VHH building block. When fused to human IgG1-Fc, the prototype VHH72 molecule prophylactically protects hamsters from SARS-CoV-2. In addition, we demonstrate that both systemic and intranasal application protects hACE-2-transgenic mice from SARS-CoV-2 induced lethal disease progression. To boost potency of the lead, we used structure-guided molecular modeling combined with rapid yeast-based Fc-fusion prototyping, resulting in the affinity-matured VHH72_S56A-Fc, with subnanomolar SARS-CoV-1 and -2 neutralizing potency. Upon humanization, VHH72_S56A was fused to a human IgG1 Fc with optimized manufacturing homogeneity and silenced effector functions for enhanced safety, and its stability as well as lack of off-target binding was extensively characterized. Therapeutic systemic administration of a low dose of VHH72_S56A-Fc antibodies strongly restricted replication of both original and D614G mutant variants of SARS-CoV-2 virus in hamsters, and minimized the development of lung damage. This work led to the selection of XVR011 for clinical development, a highly stable anti-COVID-19 biologic with excellent manufacturability. Additionally, we show that XVR011 is unaffected in its neutralizing capacity of currently rapidly spreading SARS-CoV-2 variants, and demonstrate its unique, wide scope of binding across the Sarbecovirus clades.


Subject(s)
Lung Diseases , COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.26.433062

ABSTRACT

Within one year after its emergence, more than 108 million people contracted SARS-CoV-2 and almost 2.4 million succumbed to COVID-19. New SARS-CoV-2 variants of concern (VoC) are emerging all over the world, with the threat of being more readily transmitted, being more virulent, or escaping naturally acquired and vaccine-induced immunity. At least three major prototypic VoC have been identified, i.e. the UK (B.1.1.7), South African (B.1.351) and Brazilian (B.1.1.28.1), variants. These are replacing formerly dominant strains and sparking new COVID-19 epidemics and new spikes in excess mortality. We studied the effect of infection with prototypic VoC from both B.1.1.7 and B.1.351 lineages in Syrian golden hamsters to assess their relative infectivity and pathogenicity in direct comparison to two basal SARS-CoV-2 strains isolated in early 2020. A very efficient infection of the lower respiratory tract of hamsters by these VoC is observed. In line with clinical evidence from patients infected with these VoC, no major differences in disease outcome were observed as compared to the original strains as was quantified by (i) histological scoring, (ii) micro-computed tomography, and (iii) analysis of the expression profiles of selected antiviral and pro-inflammatory cytokine genes. Noteworthy however, in hamsters infected with VoC B.1.1.7, a particularly strong elevation of proinflammatory cytokines was detected. Overall, we established relevant preclinical infection models that will be pivotal to assess the efficacy of current and future vaccine(s) (candidates) as well as therapeutics (small molecules and antibodies) against two important SARS-CoV-2 VoC.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.01.429108

ABSTRACT

In response to the ongoing COVID-19 pandemic, repurposing of drugs for the treatment of SARS-CoV-2 infections is being explored. The FDA-approved HIV protease inhibitor Nelfinavir is one of the drugs that has been reported to inhibit in vitro SARS-CoV2 replication. We here report on the effect of Nelfinavir in the Syrian hamster SARS-CoV-2 infection model. Although treatment of infected hamsters with either 15 mg/kg BID or 50 mg/kg BID Nelfinavir [for four consecutive days, initiated on the day of infection] did not reduce viral RNA loads nor infectious virus titres in the lungs (as compared to the vehicle control at the end of treatment) the drug markedly improved virus-induced lung pathology at doses that were well tolerated. Yet, a massive interstitial infiltration of neutrophils was observed in the lungs of treated (infected and uninfected) animals. The protective effect of Nelfinavir on SARS-CoV-2-induced lung pathology that is unrelated to an antiviral effect warrants further exploration in the context of the treatment of COVID-19.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Infections
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.31.429010

ABSTRACT

The novel {beta}-coronavirus, SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), has infected more than 101 million people and resulted in 2.2 million death worldwide. Recent epidemiological studies suggested that some environmental factors, such as air pollution, might be the important contributors to the mortality of COVID-19. However, how environmental exposure enhances the severity of COVID-19 remains to be fully understood. In the present report, we provide evidence showing that mdig, a previously reported environmentally-induced oncogene that antagonizes repressive trimethylation of histone proteins, is a master regulator for SARS-CoV-2 receptors neuropilin-1 (NRP1) and NRP2, cathepsins, glycan metabolism and inflammation, key determinants for viral infection and cytokine storm of the patients. Depletion of mdig in bronchial epithelial cells by CRISPR-Cas-9 gene editing resulted in a decreased expression of NRP1, NRP2, cathepsins, and genes involved in protein glycosylation and inflammation, largely due to a substantial enrichment of lysine 9 and/or lysine 27 trimethylation of histone H3 (H3K9me3/H3K27me3) on these genes as determined by ChIP-seq. These data, accordingly, suggest that mdig is a key mediator for the severity of COVID-19 in response to environmental exposure and targeting mdig may be one of the effective strategies in ameliorating the symptom and reducing the mortality of COVID-19.


Subject(s)
Virus Diseases , COVID-19 , Inflammation
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.10.419242

ABSTRACT

Since its emergence in Wuhan, China in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide resulting in a global pandemic with >1.5 million deaths until now. In the search for small molecule inhibitors of SARS-CoV-2, drug repurposing is being extensively explored. Molnupiravir (EIDD-2801) is an orally bioavailable nucleoside analog that possesses a relatively broad-spectrum antiviral activity including against coronaviruses. We here studied the effect of EIDD-2801 in a well-established Syrian hamster SARS-CoV2 infection model. Treatment of SARS-CoV-2-infected hamsters with 200 mg/kg BID of EIDD-2801 for four consecutive days, starting from the day of infection, significantly reduced infectious virus titers and viral RNA loads in the lungs and markedly improved lung histopathology. When onset of treatment was delayed until 1 or 2 days after infection, a very modest antiviral effect was observed. The potential of EIDD-2801 for the treatment and or prevention of SARS-CoV2 deserves further attention.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.23.056838

ABSTRACT

Introductory paragraphSince the emergence of SARS-CoV-2 causing COVID-19, the world is being shaken to its core with numerous hospitalizations and hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that productive SARS-CoV-2 infection in the lungs of mice is limited and restricted by early type I interferon responses. In contrast, we show that Syrian hamsters are highly permissive to SARS- CoV-2 and develop bronchopneumonia and a strong inflammatory response in the lungs with neutrophil infiltration and edema. Moreover, we identify an exuberant innate immune response as a key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Finally, we assess SARS-CoV- 2-induced lung pathology in hamsters by micro-CT alike used in clinical practice. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.


Subject(s)
Lung Diseases , Bronchopneumonia , COVID-19 , Edema
SELECTION OF CITATIONS
SEARCH DETAIL